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Abstract. Data processing is fundamental for the correct interpretation and
analysis of experimental results, so it is common to compute derivatives of noisy
sets of data. The same situation is observed when data to be processed are
obtained from numerical simulations. Here we present three different methods for
numerical calculation of higher-order derivatives, up to 20th order. The complex
integration and automatic differentiation show the best results.
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1 Introduction

When working on any experimental development, the results often includes a mixture of
noise and measurement-related phenomena, so it is not easy to draw conclusions from a
set of raw data, and this is where data processing plays an important role. Differentiation
is the process of determining how quickly a function varies, as the quantity on which it
depends change. Geometrically, it can be seen as the slope of a tangent line at a given
point within the domain of the function, so the derivative of a functions is capable of
giving information about the behavior of functions [4].

The derivative of the result of another derivative is called the second derivative of
the original function, and geometrically represents the rate of change of the slope of the
original function’s tangent line. Higher-order derivatives are useful, especially, when
dealing with functions such as those from real experimental data. Here we present
three different derivative methods are studied and compared in terms of accuracy and
derivative order to choose the best for row data processing applications.

2 Richardson’s Extrapolation

Richardson’s extrapolation makes a faster convergent sequence from another already
convergent sequence in order to get a recursive method that is reliable in convergence
speed and accuracy. To do so, two different derivative approximations, D(h) and D(h1)
for two different parameters h and h1, supposing that h1 > h, are considered.
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Generally, an approximation of a derivative, which depends on the length of step h
and its truncation error, can be expressed in the series form such as the finite differences
method, which arises from the following series expansion:

f ′(x0) = D(h) + a1h
n1 + a2h

n2 + a3h
n3 + · · ·n1 < n2 < n3. (1)

Expanding the derivative approximation for h1, and using the ratio between the step
sizes r = h1/h =⇒ h1 = rh an equation in terms of h can be written as:

f ′(x0) = D(rh) + a1(rh)
n1 + a2(rh)

n2 + a3(rh)
n3 + · · · (2)

Then, to eliminate a truncation error term, Eq. (1) is multiplied by rn1 , and Eq. (2)
is subtracted from it, to get:

f ′(x0) =
rn1D(h)−D(rh)

rn1 − 1
+ a2h

n2
rn1 − rn2

rn1 − 1
+ a3h

n3
rn1 − rn3

rn1 − 1
+ · · · (3)

The Eq. (3) represents the extrapolation process and substituting:

D1(h) =
rn1D(h)−D(rh)

rn1 − 1
, b2 = a2

rn1 − rn2

rn1 − 1
, b3 = a3

rn1 − rn3

rn1 − 1
, · · · (4)

In the result a new approximation arises, in which an error term has been eliminated,
and becomes a formula with error O(hn2). Finally, substituting r into Eq. (3) gives:

f ′(x0) =

(
h1

h

)n1
D(h)−D(h1)(
h1

h

)n1 − 1
+ b2h

n2 + b3h
n3 + · · · (5)

2.1 Recursion

From a set of approximations F , obtained by different values of h, it is possible to apply
the Richardson’s formula in a recursive way using the following expression:

Fn
m =

(
hn

hn+m

)β

Fn+1
m−1 − Fn

m−1(
hn

hn+m

)β

− 1

. (6)

The Eq. (6) can only be used when the truncation error of F has the form:

∞∑
k=1

akh
βk. (7)

So a special case of Richardson’s recursive formula can be obtained by using the
centered finite difference formula as the base convergent sequence, whose truncation
error can be expressed as:

2

∞∑
k=1

h2k

(2k + 1)!
f2k+1(xi). (8)
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And therefore the condition for the recursive formula is satisfied with β = 2. Finally
considering that hn = 2hn−1 the Expr. (6) becomes:

Fn
m =

4mFn+1
m−1 − Fn

m−1

4m − 1
. (9)

This particular case is the most widely used form of Richardson’s extrapolation due
to the oversimplifying of the calculations [1].

3 Complex Integration Method

The concept of holomorphic function in complex number’s theory states that if a
complex valued function is complex differentiable in a neighborhood of each point in a
domain, then it is infinitely differentiable and locally equal to its Taylor series [5].

Consider a function f(z) holomorphic in the simple closed contour C and at all
points inside it, then a circle C0 with center in z0 and radius r small enough that all
points of C0 are inside C, so the function is holomorphic in C, C0 and at all the points
of the doubly connected domain. Then considering the function f(z)/(z − z0), which
is holomorphic at every point except z = z0, the contour C can be related to C0 trough
the contour deformation principle, since the singularity violates the Cauchy-Goursat
theorem the relation is not nullified, and is written as:∮

C

f(z)

z − z0
dz =

∮
C0

f(z)

z − z0
dz. (10)

This allows to evaluate the integral, using polar coordinates since the contour C0 is
a circle, to solve for f(z0). To do so, C0 is parametrically expressed through the polar
angle θ and with the following change of variable z = reiθ + z0 and dz

dθ = ireiθ, the
Eq. (10) is rewritten as:∮

|z−z0|=r

f(z)

z − z0
dz =

∫ 2π

0

f(z(θ))
dz

dθ
dθ = i

∫ 2π

0

f(z0 + reiθ) dθ. (11)

To know the value f(z) in z = z0, the limit when r tends to 0 is applied in the right
side of Eq. (11):∮

C

f(z)

z − z0
dz = lim

r→0
i

∫ 2π

0

f(z0 + reiθ) dθ = i

∫ 2π

0

f(z0) dθ = iθf(z0)|2π0 = 2πif(z0).

(12)
And solving the Eq. (12) for f(z0), the Cauchy integral formula is obtained:

f(z0) =
1

2πi

∮
C

f(z)

z − z0
dz. (13)

Given the holomorphic criteria, f(z) has derivatives of all the orders in the domain
in which it is analytic and its derivatives are also analytic in the domain, hence Eq. (13)
can be generalized as:

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz. (14)
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3.1 Parameterized Cauchy Integral Formula

Since the Cauchy’s formula is written for complex functions, the contour C must be
parameterized as a function of time C(t) = a + eit, for 0 ⩽ t ⩽ 2π where a is the
center of the unitary circle, in order to apply Cauchy’s formula for real functions. The
parameterized Cauchy’s integral formula states that if a function f(t) is analytic within
the simple connected domain D and C is any simple closed contour wholly located at
D, then for any point a within C:

f (n)(a) =
n!

2π

∫ 2π

0

f(a+ eit)e−int dt. (15)

4 Automatic Differentiation Method

The automatic differentiation method is based in decompose a function in a set
elemental operations sequence easily differentiable each and computing the derivative
by attach each elemental derivative using the chain rule, taking the problem by a
combination of numerical and symbolical techniques which take advantage of the
benefits of both. Since elemental function’s derivatives are already known the results
reach symbolical accuracy [3].

A good graphical representation of the evaluation path of the method is a
graph, which is an important tool based in dynamic coding and very useful to
identify the dependency relations between variables, that stores the result of each
elementary operation in intermediate variables vj . The derivative of single dependent
variable function with respect to a independent variable can be calculated applying
systematically the chain rule from the input vertices to the output vertice of the graph,
this evaluation path is called Forward mode since the evaluations are propagated
forward from input to output.

Considering that the derivative of a vertice with respect to the independent variable is
the sum of the values of the incoming edges, and each contribute with the total derivative
of the vertice at the begin of the edge times the partial derivative of the vertice that the
edge points with respect to the vertice at the begin of the edge [2]. This evaluation can
be generalized as a column of a Jacobian matrix of a function f : ℜn → ℜm, if the
respective input variable is initialized in 1 and the rest in 0. In this way the entire matrix
will be formed after the n-times applications of the forward mode. It is easy to think
that if each elemental operations knows its derivative, the recursive application of the
method should result in the higher order derivatives of the original function.

5 Results

To compare which method is the best for data processing, the accuracy and maximum
order of the higher-order derivatives of a noisy exponential function, computed by each
method, are studied. An exponential function is chosen due that all its derivatives are
equal to the exponential function, also if results are plotted on a semi-logarithmic scale
the derivatives looks like a straight line.
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Fig. 1. Higher-order numerical derivatives computed by each of the three methods.

Then, for each method a noisy exponential function, generated by adding a sample
noisy vector to the evaluated function vector, is considered. The sample noisy vector is
generated by the Matalab’s random number generation function which return a standard
normally distributed matrix numeric array of any size.

6 Conclusions

Richardson’s extrapolation method can compute accurately at least the first four
derivative orders of a fundamental function, although its noise tolerance is very low
since noise that generates a signal to noise ratio of 0.01 dB is enough to get divergent
results for the first derivative. On the other hand, the complex integration method is
capable of calculating the first sixteen derivative orders of a fundamental function and
the fourth derivative of a noisy signal, filtering a signal with an SNR of up to -0.05 dB.

Finally, the automatic differentiation method is the most accurate way to compute
higher order derivatives of fundamental functions, no matter the order, avoiding
truncating and round error by its symbolic properties, however, the higher the derivative
order, the higher the processing time, so it is not recommended for real time
applications. Its noise tolerance is enough to compute accurate derivatives of signals
with an SNR up to -7 dB.
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